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symmetrical intensity distribution (§ 4, equations (7) 
and (8)) is verified as follows: 

J(8) = 2 i(1/(8~+y~.))q(y)dy. 
0 

Equation (7) postulates 

4:0 g(s) o I(1/'(s2+Y~))q(y)dy cos 2~rsds 

= 2~ sf(s)I(s)Jo(2~rs)ds. (11) 
o 

Proceeding as in the ease of equation (9) one finds 
~or the left-hand side 

1¢o fl  g(s ) cos 2~rs ds . ~z(~)d~ .q(V(~-~))  V(~_~-- -~) 
0 

The integral in s yields 

l ~'12g(z cos q))q(z sin (~) cos (27~rz cos ~)d(p. 
o 

If, as postulated in § 4, 

g(z cos q~)q(z sin ~)=f(z) 

this integral yields 

½gf(z)Jo (2~rz) 

which confirms equation (7). 
Equation (8) is easily verified by combining the 

above procedure with that  adopted for equation (10). 

I am indebted to Dr H. Tompa for stimulating 
discussions during the course of this work. 
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Diffraction studies of crystals locate the centroids or maxima of the distributions of atoms under- 
going thermal motion, and separations computed from these positions cannot, in general, be inter- 
preted directly as interatomic distances. Methods are presented for calculating the mean separation 
of two atoms given the isotropic or a~isotropic temperature factor coefficients. In order to apply 
these methods, it is necessary that the joint distribution which describes the motion of the atoms 
in question be known or assumed. 

The atomic coordinates resulting from a crystal struc- 
lure analysis represent the maximum or the centroid 
of a distribution of scattering density arising from the 
combined effects of atomic structure and thermal 
displacement. I t  has been common practice to compute 
an interatomic distance as the distance between a 
pair of these 'atomic positions'. With improvement ia 
the accuracy of experimental techniques, it has be- 

* Operated for the U.S. Atomic Energy Commission by 
Union Carbide Corporation. 

come clear that  this estimate is valid only in the limit 
of negligibly small thermal displacements. For exam- 
ple, a discrepancy between spectroscopic and diffrac- 
tion estimates of the C-C distance in benzene has been 
shown by Cox, Cruickshank & Smith (1955, 1958) to 
arise from the large rotatory oscillation of this molecule 
about its hexad axis. Cruickshank (1956a, 1961) has 
discussed in detail the effect of the oscillations of a 
rigid molecule on the positions of maxima in a density 
distribution, and consequently on the estimation of 
bond lengths. The present authors (Busing & Levy, 
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1957) have discussed the O-H distance in Ca(OH)~, 
using two methods to account for the effect of libra- 
t ion of the OH-  ion. 

While it  is clear tha t  errors introduced by neglect 
of thermal effects will frequently be appreciable, it  is 
seldom possible, on the basis of available information, 
to make the rigorously appropriate corrections. Spe- 
cifically, a knowledge of the correlation in thermal 
displacements of the two atoms, tha t  is their joint 
distribution, is needed, and this in general would 
require a detailed analysis of the dynamics of the 
atomic system. However, i t  frequently happens tha t  
useful estimates can be made from simplified models 
of the vibrating system, and these estimates may 
serve as acceptable approximations to the actual sys- 
tem;  it  is also possible to place rigorous upper and 
lower bounds upon the corrections. 

I t  is proposed tha t  a suitable measure of an inter- 
atomic distance is the mean separation, the average 
being taken over the joint distribution of the two 
atoms. This approach to the problem is different in  
principle from tha t  taken by Cruickshank (1956a, 
1961). Cruickshank seeks to establish the equilibrium 
position of the point of maximum scattering density 
of an individual atom, the correction being applied to 
the apparent  position of maximum density. I t  is 
believed tha t  the present t reatment ,  in dealing with 
the mean separation of a pair of atoms, in contrast 
with the equilibrium position of an individual, often 
has the advantage of being closer to the physical 
problem of interest. Further,  the use of the centroid, 
ra ther  than  the density maximum, is more nearly in 
accord with the atomic coordinates determined ex- 
perimentally, at  least if they  are obtained by least- 
squares refinement. A consequence of the use of the 
density maximum in Cruickshank's t rea tment  is the 
need for peak-shape parameters of the atom at  rest;  
no such parameters enter into the present t reatment .  
A general expression will be presented for the mean 
interatomic separation in terms of the parameters 
describing the distribution of instantaneous spearation. 
Equations for upper and lower bounds to this mean 
will be derived. The result will then be specialized for 
two simple joint distributions, expressing the desired 
quantities in terms of the parameters of the individual 
atomic distributions. The application of the correction 
to the case of rigid-body rotary  oscillation is next 
considered. Finally, the evaluation of the pertinent 
quantities in terms of temperature factor coefficients 
and in terms of principal-axis displacements is given. 

T h e  m e a n  s e p a r a t i o n  of  t w o  a t o m s  

Let the distribution of the instantaneous separation S 
of two atoms be described by the function @(S- So) - 
@(s), in which So represents the separation of the 
mean positions of the two atoms. For convenience, 
and without loss of generality, consider a cylindrical 
coordinate system with origin at  s = 0  and cylinder 

axis z in the direction of So. Then since S---So+s,  
and S = [(So + z) 2 + w2]½, where w is the radial compo- 
nent of s in this system, a Taylor-Maclaurin expan- 
sion of S yields 

S = So + z + w2/2So + . . . .  

The remaining linear and quadratic terms vanish 
identically. The mean interatomic separation obtained 
by averaging S over the distribution @(s) is then 

S = So + w2/2So + . . .  

since ~. = 0 if So is chosen as described above. 
_ The__error in terminating the series, approximately 

(z3-s2z)/2S~, will be satisfactorily small in cases of 
interest. If @(s) is symmetric with respect to inversion 
through the origin, this remainder vanishes, and the 
next term is of the order of s4/2S3 o. 

I t  is clear tha t  w is the relative vector displacement 
of two atoms projected on the plane normal to the 
line of mean positions. The value of w --~ will now be 
expressed in terms of quantities which are experimen- 
ta l ly  accessible; namely, the mean components of dis- 
placements of the atoms individually. While this can 
be done explicitly only by making a specific choice of 
the joint distribution function of the displacements of 
the individual atoms, the upper and lower bounds to 

may be derived without such a specification. Let 
wB and WA be the projected instantaneous displace- 
ment of the two atoms, so tha t  W=WB--WA and 

w2 = w ~  - 2 w  8 .  w A  + w-Z~. 

A well-known theorem of statistics places bounds upon 
the second term of the right-hand member;  namely, 

- _< w .  < 

I t  follows tha t  

and 
S0+w~/2s0 _< ~ < S0+w~/2&. 

Since the quantities involved are all observable, it  is 
possible to place upper and lower bounds upon the 
mean separation of two atoms without any assump- 
tions as to their correlated motion. The lower bound 
corresponds to highly correlated parallel displacements 
of the two atoms and the upper bound to highly cor- 
related antiparallel displacements. Neither of these 
extremes is to be expected to describe the actual 
displacements of atoms in crystals. 

We next  present expressions for S in two simple 
special cases which are, of course, intermediate be- 
tween the foregoing extremes. 

'R iding '  motion 

Let the vector separation be independent of the posi- 
tion of one of the atoms, A, and let this position be 
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expressed in terms of rA, the displacement of A from 
its mean position. Then the second atom B, at a posi- 
tion similarly defined by rB, will be distributed accord- 
ing to the convolution of the distribution function 
~A(rA) of the first atom with that  of the separation 
vector, ~(s)= ~(rB--ra), for independence of ra  and 
r B - r a  implies that  the joint distribution of A and B 
is 

eJ(rA, r~) = ~a(rA)~(rs-  ra) 
and, hence, 

I dra~a(rA, r z ) =  I ~a(ra)~(rB--ra)dra ,  

the convolution of ~a with 0. I t  is shown in the Appen- 
dix that  the mean-square components are additive on 
convolution so that  

~V 2 o - - ~  
~-~ W ~  - -  W A 

and 

~=So+ (~-~)12So. 

The 'riding' case may be expected to provide a useful 
model of atomic motion in a number of real situations. 
For example, if atom B is much lighter than atom A 
and is strongly linked only to A, the lighter atom may 
be thought to 'ride' on the heavier in the manner 
described. This situation occurs in hydrogenous 
crystals frequently. (Strictly, one must exclude the 
possibility of rigid-body rotations of A and B about 
a center removed from A and this will be discussed 
below.) 

A related application of this case is the following: 
let A represent not an individual atom, but the center 
of mass of a reasonably rigid, isolated molecule, and 
let B represent an atom of the molecule. Atom B may 
then be described as 'riding' on the motion of the 
center of mass. 

If the motion of the center of mass or of atom A 
should be very small, a possible condition at low 
temperature, then the motion of B would be described 
by this case with w~ = 0. 

Non-correlated motion 

Let the positions of atoms A and B be distributed 
independently; then their joint distribution is 

~a(ra, rB) = CA(rA)~B(rB) . 

Let their relative displacement be s = r B -  rA. The 
distribution of s is given by 

O(S)- I oa(rA, S+rA)drA 

= I ~a(rA)QB(s +rA)dra  

which is the convolution of QA with the inversion of 
~B through its origin. Again invoking the general 
properties of convoluted distributions derived in the 
Appendix we have 

w ~ = w~ + w~ 

and 

~ = s 0 +  (w~ + w~)/2s0. 

This case is a description of the motion of non- 
interacting atoms and may be a reasonable approxima- 
tion for non-bonded atoms in a molecular crystal. 

Molecular libration 

The case of molecular libration may correspond to 
large-amplitude correlated motion and therefore may 
often require appreciable corrections to interatomic 
distances. The mean separation may be computed in 
this situation provided the principal axes and ampli- 
tudes of rotation are known. Unfortunately, it is not 
possible, in general, to derive this information di- 
rectly from observed quantities. A procedure usually 
applicable to rigid-body molecular motion has been 
described by Cruickshank (1956b). 

Assume that such a procedure has been used to 
determine an axis defined by the unit vector a about 
which a group of atoms involving the interatomic 
vector S oscillates with mean square amplitude ~.. 
Then So, the observed value of this interatomic dis- 
tance, will be foreshortened by an amount which 
depends on w ~, where w is the component perpendicular 
to S of the change in S produced by a small rotation q~. 
Since dS/dqD=a × S is itself perpendicular to S it 
follows that w'Z=S 2 sin 9. ~ 2 ,  where ~o is the angle 
subtended by a and S. Then ~;=So+ cf2So sin e ~/2, 
where So has been substituted for the approximately 
equal quantity S. For independent oscillations about 
more than one principal axis, the corrections are 
additive. 

Note on the correction of angles 

Thermal displacements may be expected to produce 
distortions in apparent angles as well as distances. 
A sensible measure of an angle is its mean value over 
the joint distribution describing correlated motion of 
the three atoms involved, but the evaluation of this 
mean angle is a more complex problem than that  of 
computing mean distances. I t  is to be emphasized 
that  angles computed by triangulation from mean 
separations are not in general proper measures of 
mean angles. An extreme example is the case of a 
linear molecule undergoing pure bending motion: tri- 
angulation from mean separations will yield a non- 
linear configuration, while averaging over the proper 
joint distribution must, of course, give a 180 ° angle. 
Unless the atomic motion is correctly analyzed in 
detail, it appears preferable to compute angles from 
the uncorrected distances. 

Evaluation in terms of temperature 
factor coefficients 

Since the characteristic parameters of atomic distribu- 
tions are usually available in the form of temperature 
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factor coefficients, the expression for w ~' will be evalu- 
ated in these terms. For this purpose it is noted that  
w ~ = r ~ - z  2 where r is the instantaneous displacement 
of the atom from its centroid, and z is the component 
of displacement parallel to the interatomie vector. 

Let the anisotropie temperature factor be repre- 
sented by the matrix fl in which the elements fl~j are 
coefficients in the quadratic form 

3 

M = 2` fl,jh,h¢; ht = h, k, 1. 
i ,~  = 1 

In matrix notation, 

M = h ~ h  

in which the column matrix h represents the three 
reciprocal-axis coordinates, h, k, 1. 

Let g be the metric matrix with components g~j = 
at. a¢, the scalar products of the unit cell vectors. The 

quanti ty it~h/2~r21tg-Xh is the mean square component 
of displacement of the atom in the direction corre- 
sponding to h. We desire this quantity for the direc- 
tion of the interatomic vector separation So which 
will ordinarily be described in terms of the direct 
lattice components 

8 

So = ~Y S0ia~. 
i = 1  

The reciprocal axis components are given by the ma- 
tr ix product gSo, where So represents the column 
matrix with components S0,. Hence 

N 

~ = ( g s 0 ) f l ( g s 0 ) / 2 ~ 0 g s 0 ,  

or, in algebraic notation 

where 

3 3 

z ~" = 2`  fl~jU~ U # 2 z  ~" 2 ,  So~U~ 
i ,  j = l  i = 1  

3 

Ui = Z (a,. a~)So~. 
k = l  

The value of r 2 is proportional to the sum of the 
eigenvalues, and hence to the trace, of the matrix/~ff 
(Busing & Levy, 1958) or 

r2= Y r ( ~ g ) / 2 ~  2 

and w 9 may be calculated. 
In algebraic notation 

3 

r 2 __-- ~ flij(aj.ai)/2u ~ • 
i, j=l 

If the thermal motion of the atoms is known only 
in terms of isotropic temperature factors, M =  
B(sin 0/;t) 2, the above expressions reduce to wg"= 
2B/87d'. 

E v a l u a t i o n  in  t e r m s  of pr inc ipa l  ax i s  
d i s p l a c e m e n t s  

I t  may happen that  a description of the atomic dis- 
tributions in terms of principal axis displacements is 
available. Let/z~ represent the mean square displace- 
ment parallel to principal axis i of the distribution, 
and let ~ be the direction cosine of So with respect 
to this axis. Then 

3 
W 2 2` (1  2 2 = - ~i)#i • 

i = 1  

E x a m p l e s  and d i s c u s s i o n  

I t  is again emphasized that  proper application of the 
correction discussed in this paper, except for evaluat- 
ing the bounds, calls for physical insight into the 
dynamics of the crystal, and this is not always pos- 
sible to obtain. The considerations involved are illus- 
trated in the following examples. 

Calcium hydroxide. This crystal (Busing & Levy, 
1957) contains discrete O-H groups, presumably 
ions, separated from each other and from Ca by 
distances great enough to preclude strong bonding. 
The hydrogen atom shows pronounced anisotropic 
displacements which are considerably greater than 
those of oxygen. In this situation, and in view of the 
16-fold greater mass of oxygen, it is reasonable t~ 
suppose that  three independent modes of motion ob- 
tain: (1) translational oscillations of the ion as a 
whole, (2) rotary oscillations about a pair of axes 
substantially passing through O and normal to O-H,. 
and (3) stretching of O-H. All of these modes are 
encompassed by postulating that  the displacements 
of H with respect to O are uncorrelated with those of 
O; in other words, H 'rides' upon O. Making use of 
the reported room-temperature parameters, the fol- 
lowing values for the O-H distance are obtained: 

Uncorrected: 0"936 
Lower bound: 0.956 

'Riding' motion: 0.983 
Upper bound: 1.051 

For the reasons given above, the value 0.983 A is 
judged the best; however, it is of interest that  the 
mean separation cannot be shorter than 0.956 ~, 
whatever the nature of the atomic motion. 

The closest H - H  distance in Ca(OH)2 also provides 
an instructive example. The structure suggests that  
these atoms are in van der Waals contact. If it is 
supposed that  the contact is a 'soft' one, that  is, that  
the motion of one atom does not appreciably affect 
the motion of its neighbor, then the assumption of 
non-correlated displacements is appropriate. If, on the 
other hand, the contact is assumed to be 'hard' so 
that  the atoms strongly repel each other and undergo 
correlated parallel motion, then the mean distance 
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approaches the lower bound which in this case is the 
same as the uncorrected separation. The values ob- 
tained follow: 

Uncorrected distance or lower bound: 
Uncorrelated motion: 

Upper bound: 

2.201 A 
2.235 
2.279 

It  is of interest that  even the upper bound is less than 
a nominal van der Waals contact of 2.34 ~. 

Benzene. The structure of benzene (Cox, Cruickshank 
& Smith, 1958) illustrates the treatment of rigid-body 
oscillation and rotation. The thermal displacements 
are strongly anisotropic with principal components 
normal to the plane of the ring, radial to the ring and 
tangential to the ring. The large difference in magni- 
tude between the tangential components and the 
others, together with the lack of restraining contacts 
in the structure, suggests a rotary oscillation of the 
molecule in its own plane. Most of the remaining 
motion may be assigned to translational oscillations 
of the molecule which are isotropic in the molecular 
plane, although this is no doubt something of an over- 
simplification. On this basis, the mean separation of 
two adjacent carbon atoms is computed as follows. 
We have So = 1.378, and for libration about the hexad 
axis sin yJ = 1 and 

~e = (7.4-- 4.5)/8~2(1.378) = 0.0367/1.378. 

Then w~=0.0367, and the correction is 0.013 ~. A 
similar treatment of libration about axes in the plane 
of the molecule yields an additional correction of 
0.001 /~ and a mean distance of S =  1"392/~. Because 
hexagonal molecular symmetry is assumed, the lower 
bound is equal to the uncorrected value, 1.378 J~, 
and the upper bound, 1.56 _~, is clearly too large to 
correspond to a true separation. The value 1.392 is in 
agreement with Cruickshank's treatment, which makes 
parallel assumptions as to the nature and amplitude 
of the molecular rotation. 

A P P E N D I X  

Propert ies  of convoluted distr ibut ions  

Given two normalized distributions ~l(r) and Q2(r), 
each with centroid at r = 0 ,  their convolution is Q(r)= 

I ~l(s)~2(r~ s)ds. The defines the negative sign con- 

volut ion proper and is pertinent to the 'riding' case 
of the text;  the positive sign defines the convolution 
of Q1 with the inversion of Q2 and is pertinent to the 
case of uncorrelated motion. Let z be any Cartesian 
component, z = r . k ,  where k is a unit vector. Then 
averaging over the convolution: 

l (r.k)2Q(r)dr = l (r.k)2 f ~l(s)~2(r T-s)dsdr 

: l I (u.k + 

-- I ~2(u) I [(u'k)9-+ 2 ( u . k ) ( s . k ) +  (s.k)2]Ql(s)dsdu 

= I Q~(u)[(u k)~+ 2 ( u . k ) ~ +  Zl~-] du 

= z~+z~ 

since zl ---- z2 = 0. 
Because z is any Cartesian component, the same 

consideration applies to x and y; hence 

r ~. = x2 + y~ + z 2 = r~ + r~ 
and 

we = r 2 -  z~ = w~ + w ~  
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